

Figure 1. ORTEP view of the structure of the  $[Re_2Cl_3(\mu-dppm)_2(CO)-(CN-t-Bu)_2]^+$  cation with methyl groups and phenyl rings omitted. The thermal ellipsoids are drawn at the 50% probability level. Important bond lengths (Å) and angles (deg) are as follows: Re-Re = 2.379 (1), Re\_1-Cl\_{11} = 2.496 (2), Re\_2-Cl\_{21} = 2.538 (2), Re\_2-Cl\_{22} = 2.404 (3), Re\_1-P\_{11} = 2.485 (3), Re\_1-P\_{12} = 2.493 (3), Re\_2-P\_{21} = 2.494 (3), Re\_2-P\_{22} = 2.468 (3), Re\_2-C\_{21} = 1.292 (9), Re\_1-Cl\_{21} = 2.09 (1), Re\_1-Cl\_{11} = 2.05 (1); Re\_1-Re\_2-Cl\_{21} = 161.9 (1), Re\_2-Re\_1-Cl\_{11} = 168.3 (1), Re\_1-Re\_2-Cl\_{22} = 107.9 (1), Re\_1-C\_{111}-N\_{112} = 174 (1), Re\_1-C\_{121}-N\_{122} = 175 (1).

 $(\mu$ -Cl) $(\mu$ -CO) $(\mu$ -dppm)<sub>2</sub>Cl<sub>3</sub>(CO),<sup>3</sup> Re<sub>2</sub> $(\mu$ -Cl) $(\mu$ -CO) $(\mu$ -dppm)<sub>2</sub>Cl<sub>3</sub>(CNxyl),<sup>4</sup> [Re<sub>2</sub> $(\mu$ -Cl) $(\mu$ -CO) $(\mu$ -dppm)<sub>2</sub>Cl<sub>2</sub>(CO)-(NCEt)]PF<sub>6</sub>,<sup>13</sup> and [Re<sub>2</sub> $(\mu$ -Cl) $(\mu$ -CO) $(\mu$ -dppm)<sub>2</sub>Cl<sub>2</sub>(CO)(CN-t-Bu]PF<sub>6</sub>.<sup>5</sup> This Re-Re bond shortening in **3b**, compared to the bond length in the Re $(\mu$ -CO)Re species, is in accord with the presence of an electron-rich Re=Re bond, although it is weakened (and lengthened) through back-bonding involving the  $\pi$  components of the metal-metal bond and the  $\pi^*$  orbitals on the terminal CO and t-BuNC ligands. The change to an edge-sharing bioctahedral structure leads to a lengthening in this bond of ca. 0.2 Å; the effect is tantamount to the change in Re-Re distance that occurs upon forming a doubly bonded dirhenium(III) complex such as Re<sub>2</sub>( $\mu$ -Cl)<sub>2</sub>( $\mu$ -dppm)<sub>2</sub>Cl<sub>4</sub>.<sup>14</sup> Thus, the formation of a  $\mu$ -CO unit in these dirhenium complexes gives the same effect as a net two-electron oxidation from Re<sub>2</sub><sup>4+</sup> to Re<sub>2</sub><sup>6+</sup>. This is a consequence of treating the CO ligand as forming a divalent bridge.<sup>4</sup>

The structure of **2b** most likely resembles that of **3b** in possessing terminally bound CO and t-BuNC ligands, i.e.  $(CO)Cl_2Re(\mu$  $dppm)_2ReCl_2(CN-t-Bu)$ . We also find that  $CH_2Cl_2$  solutions of 2b react with nitriles and with xylyl isocyanide at room temperature in the presence of TIPF<sub>6</sub> to yield complexes of stoichiometry  $[Re_2Cl_3(dppm)_2(CO)(CN-t-Bu)(L)]PF_6$ , where L = MeCN, EtCN, and xylNC (70-75% yield). These complexes possess electrochemical properties that resemble those of 3b (see ref 5) and IR spectral properties that accord with a structure very similar to that of 3b, i.e. a terminal CO ligand and the *t*-BuNC ligand trans to L.<sup>15</sup> The lability of the nitrile ligands L in these complexes is demonstrated by the conversion of [Re<sub>2</sub>Cl<sub>3</sub>-(dppm)<sub>2</sub>(CO)(CN-t-Bu)(NCMe)]PF<sub>6</sub> into 3b (70% yield) upon its reaction with t-BuNC in dichloromethane. Accordingly, 3b is a new structural prototype for dirhenium complexes that contain  $\pi$ -acceptor ligands, and studies are under way to examine the scope of this chemistry.

Acknowledgment. Support from the National Science Foundation (Grant No. CHE85-06702) is gratefully acknowledged.

- (14) Barder, T. J.; Cotton, F. A.; Lewis, D.; Schwotzer, W.; Tetrick, S. M.; Walton, R. A. J. Am. Chem. Soc. 1984, 106, 2882.
- (15) For example,  $[Re_2Cl_3(dppm)_2(CO)(CN \cdot t-Bu)(CNxyl)]PF_6$  has  $\nu(CO) = 1927 \text{ cm}^{-1}$  and  $\nu(C\equiv N) = 2161$  and  $2134 \text{ cm}^{-1}$  for a Nujol mull.

Supplementary Material Available: A table of atomic coordinates and an ORTEP view of the cation  $[Re_2Cl_3(\mu-dppm)_2(CO)(CN-t-Bu)_2]^+$  showing the full atomic numbering scheme (5 pages). Ordering information is given on any current masthead page.

Department of ChemistryPhillip E. FanwickPurdue UniversityAndrew C. PriceWest Lafayette, Indiana 47907Richard A. Walton\*

Received May 11, 1987

## Phosphinecarboxylate Ligands Formed by the Insertion of Carbon Dioxide into Metal-Phosphido Bonds. Preparation and Structural Characterization of

## Tetrakis(di-*tert*-butylphosphinecarboxylato)dimolybdenum Sir:

We recently demonstrated that amido (NR<sub>2</sub>) ligands are stronger  $\pi$  donors than phosphido (PR<sub>2</sub>) ligands in structural and spectroscopic studies of 1,2-M<sub>2</sub>[P(t-Bu)<sub>2</sub>]<sub>2</sub>(NMe<sub>2</sub>)<sub>4</sub> (M = Mo (1) and W),<sup>1</sup> and next sought to compare NR<sub>2</sub> and PR<sub>2</sub> ligands on the basis of chemical reactivity. The conversion of NR<sub>2</sub> ligands to carbamate (O<sub>2</sub>CNR<sub>2</sub>) ligands by reaction with CO<sub>2</sub> is wellknown,<sup>2</sup> and we and others<sup>3</sup> suspected that PR<sub>2</sub> groups might also undergo formal CO<sub>2</sub> insertion to give phosphinecarboxylate (O<sub>2</sub>CPR<sub>2</sub>) ligands. We now report the preparation of the mixed-ligand complex Mo<sub>2</sub>[O<sub>2</sub>CP(t-Bu)<sub>2</sub>]<sub>2</sub>(O<sub>2</sub>CNMe<sub>2</sub>)<sub>2</sub>(NMe<sub>2</sub>)<sub>2</sub> (M=M) (2) from 1, and its unexpected decomposition to give

 $Mo_2[O_2CP(t-Bu)_2]_4$  (M<sup>4</sup>-M) (3). To our knowledge 3 is the first homoleptic  $O_2CPR_2$  complex and the first  $O_2CPR_2$  complex to be structurally characterized. The structure of 3 reveals important differences in the bonding capabilities of  $O_2CPR_2$  and  $O_2CNR_2$ ligands.

Phosphido-amido complex 1 and excess  $CO_2$  react rapidly to give 2 as a yellow precipitate (54%) according to eq 1. Complex

$$1,2-Mo_{2}[P(t-Bu)_{2}]_{2}(NMe_{2})_{4} + 4CO_{2} \xrightarrow{\text{nexame}} 1 Mo_{2}[O_{2}CP(t-Bu)_{2}]_{2}(O_{2}CNMe_{2})_{2}(NMe_{2})_{2} (1)$$

2 has been characterized by spectroscopic and elemental analyses.<sup>4</sup> The lack of any  $\nu_{C=0}$  in the IR spectrum indicates that O<sub>2</sub>CP-(*t*-Bu)<sub>2</sub> and O<sub>2</sub>CNMe<sub>2</sub> ligands are bound in a  $\eta^2$  fashion. NMR data show that the two O<sub>2</sub>CP(*t*-Bu)<sub>2</sub> ligands, the two O<sub>2</sub>CNMe<sub>2</sub> ligands, and the two NMe<sub>2</sub> ligands are chemically equivalent, respectively, and that each bears diastereotopic alkyl groups. Various geometries are consistent with these data, and the structure of **2** is likely to be similar to known structures of related carbamate complexes.<sup>5</sup>

- Buhro, W. E.; Chisholm, M. H.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 905.
- (2) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. Metal and Metalloid Amides; Wiley: New York, 1980; p 577.
- (3) (a) Baker's studies of CO<sub>2</sub> insertion into metal-phosphido bonds preceded our own.<sup>3b</sup> (b) Baker, R. T. Abstracts of Papers, 192nd National Meeting of the American Chemical Society, Anaheim, CA; American Chemical Society: Washington, DC, 1986; INOR-96. (c) Insertion of CS<sub>2</sub> into the Zr-P bonds of Zr(n<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>[P(SiMe<sub>3</sub>)<sub>2</sub>](X) (X = Cl, Me) was recently reported; similar reactions with CO<sub>2</sub> were attempted.<sup>3d</sup> (d) Hey, E.; Lappert, M. F.; Atwood, J. L.; Bott, S. G. J. Chem. Soc., Chem. Commun. 1987, 421.
- was recently reported; similar reactions with CO<sub>2</sub> were attempted.<sup>30</sup> (d) Hey, E.; Lappert, M. F.; Atwood, J. L.; Bott, S. G. J. Chem. Soc., Chem. Commun. 1987, 421.
  (4) Data for 2: <sup>31</sup>P[<sup>1</sup>H] NMR (ppm, C<sub>6</sub>D<sub>6</sub>) 43.0 (s); <sup>1</sup>H NMR (δ, C<sub>6</sub>D<sub>6</sub>) 4.85 (s, 6 H, NMe<sub>2</sub>), 3.10 (s, 6 H, NMe<sub>2</sub>), 2.83 (s, 6 H, O<sub>2</sub>CNMe<sub>2</sub>), 2.63 (s, 6 H, O<sub>2</sub>CNMe<sub>2</sub>), 1.48 (d, <sup>3</sup>J<sub>HP</sub> = 11.1 Hz, 18 H, t-Bu), 1.46 (d, <sup>3</sup>J<sub>HP</sub> = 11.2 Hz, 18 H, t-Bu); <sup>13</sup>C[<sup>1</sup>H] NMR (ppm, C<sub>6</sub>D<sub>6</sub>) 189.0 (d, <sup>1</sup>J<sub>CP</sub> = 24.7 Hz, O<sub>2</sub>CP), 174.8 (s, O<sub>2</sub>CN); IR (cm<sup>-1</sup>, KBr) ν<sub>O<sub>2</sub>CN, 1575 s; 1480 m, 1455 m; mp 169–176 °C dec. Anal. Calcd for C<sub>28</sub>H<sub>60</sub>Mo<sub>2</sub>N<sub>4</sub>O<sub>8</sub>P<sub>2</sub>: C, 40.29; H, 7.25. Found: C, 40.18; H, 7.11.
  (a) Chisholm, M. H.; Extine, M.; Cotton, F. A.; Stults, B. R. J. Am. Chem. Soc. 1976, 98. 4683. (b) Chisholm, M. H.; Cotton, F. A.; Extine, Sec.
  </sub>
- (5) (a) Chisholm, M. H.; Extine, M.; Cotton, F. A.; Stults, B. R. J. Am. Chem. Soc. 1976, 98, 4683. (b) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Stults, B. R. Inorg. Chem. 1977, 16, 603. (c) Chisholm, M. H.; Reichert, W. W. Inorg. Chem. 1978, 17, 767. (d) See also: Chisholm, M. H.; Heppert, J. A.; Hoffman, D. M.; Huffman, J. C. Inorg. Chem. 1985, 24, 3214.

<sup>(13)</sup> Cotton, F. A.; Dunbar, K. R.; Falvello, L. R.; Walton, R. A. Inorg. Chem. 1985, 24, 4180.



Figure 1. ORTEP view of  $Mo_2[O_2CP(t-Bu)_2]_4 \cdot 2C_6H_6$  (3.2 $C_6H_6$ ). Selected distances (Å): Mo-Mo = 2.092 (3), Mo-O(av) = 2.107 (9), O-C(av) = 1.27 (1), and  $O_2C-P(av) = 1.860$  (5).

Our attempts to crystallize 2 have been frustrated by its slow decomposition in solution at ambient temperature, giving several new species (by NMR monitoring). We initially considered the instability might result from reversible CO<sub>2</sub> insertion and deinsertion, but 2 does not undergo exchange with  ${}^{13}CO_2$  over the course of several weeks. One decomposition product readily crystallizes in small amounts (0.08-0.10 molar equiv based on 2) from  $C_6H_6$ , and has been identified as  $Mo_2[O_2CP(t-Bu)_2]_4$ . 2C<sub>6</sub>H<sub>6</sub> (3·2C<sub>6</sub>H<sub>6</sub>) by spectroscopic analyses,<sup>6</sup> and X-ray crystallography.<sup>7</sup> Thus, the decomposition of 2 involves both ligand exchange and redox chemistry. Complex 3 can be prepared directly from  $Mo_2[P(t-Bu)_2]_2[\mu-P(t-Bu)_2]_2$ ,<sup>8</sup> and  $CO_2$  (in ca. 25%) yield based on MoCl<sub>3</sub>).<sup>9</sup>

- (6) Data for 3:  ${}^{31}P_{1}^{i1}H_{1}$  NMR (ppm, C<sub>6</sub>D<sub>6</sub>) 51.0 (s);  ${}^{1}H$  NMR ( $\delta$ , C<sub>6</sub>D<sub>6</sub>) 1.47 (d,  ${}^{3}J_{HP} = 11.6$  Hz, 72 H);  ${}^{13}C_{1}^{i1}H_{1}$  NMR (ppm, C<sub>6</sub>D<sub>6</sub>) 192.5 (d,  ${}^{1}J_{CP} = 31.3$  Hz, O<sub>2</sub>CP); IR (cm<sup>-1</sup>, KBr) 1469 m, 1438 m; dec pt 213-245 °C.
- (7) Crystal data for  $3\cdot 2C_6H_6$  at -155 °C: yellow hexagonal prism (0.25 × 0.25 × 0.30 mm), a = 13.731 (21) Å, b = 12.789 (17) Å, c = 15.835(23) Å,  $\beta = 94.86$  (8)°, space group  $P2_1/n$ , Z = 2,  $d_{calcd} = 1.324$  g cm<sup>-3</sup>. Using Mo K $\alpha$  (graphite monochromated),  $6^\circ \le 2\theta \le 45^\circ$ , 4401 total reflections with 2943 having  $F > 3\sigma(F)$  (+h,+k, ±l) yielded final residuals R(F) = 0.032 and  $R_{*}(F) = 0.035$ . The diffractometer has been described previously: Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kirkpatrick, C. C. *Inorg. Chem.* 1984, 23, 1021.
   (8) Jones, R. A.; Lasch, J. G.; Norman, N. C.; Whittlesey, B. R.; Wright,
- T. C. J. Am. Chem. Soc. 1983, 105, 6184.

The molecular structure of  $3 \cdot 2C_6 H_6$  is shown in Figure 1, and important distances are listed in the caption. The compound adopts the familiar paddlewheel geometry for  $Mo_2(O_2CX)_4$ species,<sup>10</sup> with benzene solvate molecules in axial positions at distances precluding significant bonding interactions (the closest solvate Mo-C distance is 3.11 Å).<sup>11</sup> Of special interest are parameters for the  $\mu, \eta^2$ -O<sub>2</sub>CP(t-Bu)<sub>2</sub> ligands. Configurations at P are grossly pyramidal, as shown by the sums of angles about P atoms, 310.2-313.4 (6)°. The P-CO<sub>2</sub> distances of 1.86 (1) Å are normal P-C single-bond lengths.<sup>12</sup> This contrasts with typical parameters for  $\mu, \eta^2$ -O<sub>2</sub>CNR<sub>2</sub> ligands, which describe planar configurations at N and short N-CO<sub>2</sub> distances, resulting from effective delocalization of N lone pairs into CO<sub>2</sub>  $\pi^*$  frameworks.<sup>5b,13</sup> The net effect is stronger metal-ligand bonding via O-to-M  $\pi$  donation in O<sub>2</sub>CNR<sub>2</sub> complexes. The lack of this effect in 3 is presumably a reflection of inherently poor P–C  $\pi$  overlap.<sup>14</sup> Further studies are in progress.<sup>15</sup>

**Registry No. 1**, 106651-37-0; **3**, 109801-37-8; **3**·2C<sub>6</sub>H<sub>6</sub>, 109801-38-9;  $Mo_2[\tilde{P}(t-\tilde{B}u)_2]_2[\mu-P(t-Bu)_2]_2$ , 86802-71-3; CO<sub>2</sub>, 124-38-9; HP(t-Bu)<sub>2</sub>, 819-19-2; Mo, 7439-98-7.

Supplementary Material Available: Tables of fractional coordinates and isotropic thermal parameters, anisotropic thermal parameters, and complete listings of bond distances and angles and atom-numbering diagrams (11 pages); a listing of calculated and observed structure factors (8 pages). Ordering information is given on any current masthead page.

- (9) (a) We generate Mo<sub>2</sub>[P(t-Bu)<sub>2</sub>]<sub>2</sub>[µ-P(t-Bu)<sub>2</sub>]<sub>2</sub> in situ from 2MoCl<sub>3</sub> + 6LiP(t-Bu)<sub>2</sub> in THF at -78 °C. Reduction of Mo(III) to Mo(II) is accompanied by the formation of (t-Bu)<sub>2</sub>P-P(t-Bu)<sub>2</sub>.<sup>9b</sup> (b) Data for Mo<sub>2</sub>[P(t-Bu)<sub>2</sub>]<sub>2</sub>[µ-P(t-Bu)<sub>2</sub>]<sub>2</sub> in situ: <sup>31</sup>P[<sup>1</sup>H} NMR (ppm, THF, -35 °C) 279.9 (t, <sup>2</sup>J<sub>PP</sub> = 64.8 Hz), 231.7 (t, <sup>2</sup>J<sub>PP</sub> = 64.8 Hz).
  (10) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Wilson Work 1982: p.84
- Wiley: New York, 1982; p 84.
- (11) (a) We note the structural similarity of  $3\cdot 2C_6H_6$  to  $Hb_2(O_2CCF_3)_4$ - $(\eta^2 - C_6 Me_6)_2$ , in which the  $C_6 Me_6$  ligands occupy axial positions with much shorter M-C distances (2.56-2.58 Å).<sup>11b</sup> (b) Lau, W.; Huffman, J. C.; Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 5515.
   (12) Corbridge, D. E. C.; Phosphorus; Elsevier: New York, 1985; p 38.
   (13) (a) Chisholm, M. H.; Extine, M. W. J. Am. Chem. Soc. 1977, 99, 782,
- 792. (b) Chisholm, M. H.; Clark, D. L.; Huffman, J. C.; Van Der Sluys, W. C. *Ibid.*, in press.
- (14) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley-Interscience: New York, 1985; pp 145-147.
- (15) We thank the National Science Foundation and the Wrubel Computing Center at Indiana University for support. W.E.B. thanks Indiana University for a Chester Davis Fellowship (1985-1986) and W. G. Van Der Sluys for important suggestions and discussions.

| Department of Chemistry and Molecular | William E. Buhro     |
|---------------------------------------|----------------------|
| Structure Center                      | Malcolm H. Chisholm* |
| Indiana University                    | Kirsten Folting      |
| Bloomington, Indiana 47405            | John C. Huffman      |

Received March 27, 1987