

Figure 1. ORTEP view of the structure of the $[Re_2Cl_1(\mu\text{-dppm})_2(CO)]$ $(CN-t-Bu)_2$ ⁺ cation with methyl groups and phenyl rings omitted. The thermal ellipsoids are drawn at the 50% probability level. Important bond lengths **(A)** and angles (deg) are as follows: Re-Re = 2.379 (I), $Re_1-Cl_{11} = 2.496$ (2), $Re_2-Cl_{21} = 2.538$ (2), $Re_2-Cl_{22} = 2.404$ (3), $Re_1-P_{11} = 2.485$ (3), $Re_1-P_{12} = 2.493$ (3), $Re_2-P_{21} = 2.494$ (3), Re_2-P_{22} $= 2.468$ (3), $\text{Re}_2-\text{C}_{21} = 1.922$ (9), $\text{Re}_1-\text{C}_{121} = 2.09$ (1), $\text{Re}_1-\text{C}_{111} = 2.05$ (1); $Re_1-Re_2-Cl_{21} = 161.9$ (1), $Re_2-Re_1-Cl_{11} = 168.3$ (1), $Re_1-Re_2-Cl_{22}$ $= 107.9$ (1), Re₁-C₁₁₁-N₁₁₂ = 174 (1), Re₁-C₁₂₁-N₁₂₂ = 175 (1).

 $(\mu\text{-Cl})(\mu\text{-CO})(\mu\text{-dppm})_{2}\text{Cl}_{3}(\text{CO})$,³ Re₂ $(\mu\text{-Cl})(\mu\text{-CO})(\mu\text{-}$ dppm)₂Cl₃(CNxyl),⁴ [Re₂(μ -Cl)(μ -CO)(μ -dppm)₂Cl₂(CO)- nomoleptic \contractively $(NCEt)]PF_6$ ¹³ and $[Re_2(\mu\text{-}Cl)(\mu\text{-}CO)(\mu\text{-}dppm)_2Cl_2(CO)(CN-$?-BU]PF,.~ This Re-Re bond shortening in **3b,** compared to the bond length in the $Re(\mu$ -CO)Re species, is in accord with the presence of an electron-rich Re=Re bond, although it is weakened (and lengthened) through back-bonding involving the π components of the metal-metal bond and the π^* orbitals on the terminal CO and t-BuNC ligands. The change to an edge-sharing bioctahedral structure leads to a lengthening in this bond of ca. 0.2 **A;** the effect is tantamount to the change in Re-Re distance that occurs upon forming a doubly bonded dirhenium(II1) complex such as $\text{Re}_2(\mu\text{-Cl})_2(\mu\text{-dppm})_2\text{Cl}_4$.¹⁴ Thus, the formation of a $\mu\text{-CO}$ unit in these dirhenium complexes gives the same effect as a net two-electron oxidation from Re_2^{4+} to Re_2^{6+} . This is a consequence of treating the CO ligand as forming a divalent bridge.4

The structure of **2b** most likely resembles that of **3b** in possessing terminally bound CO and t-BuNC ligands, i.e. $(CO)Cl₂Re(\mu$ $dppm$)₂ReCl₂(CN-t-Bu). We also find that CH_2Cl_2 solutions of **2b** react with nitriles and with xylyl isocyanide at room temperature in the presence of TIPF₆ to yield complexes of stoichiometry $[Re_2Cl_3(dppm)_2(CO)(CN-t-Bu)(L)]PF_6$, where $L =$ MeCN, EtCN, and xylNC (70-75% yield). These complexes possess electrochemical properties that resemble those of **3b** (see ref **5)** and IR spectral properties that accord with a structure very similar to that of **3b,** i.e. a terminal CO ligand and the t-BuNC ligand trans to **L.I5** The lability of the nitrile ligands L in these complexes is demonstrated by the conversion of $[Re_2Cl_3$ -**(dppm)2(CO)(CN-t-Bu)(NCMe)]PF6** into **3b** (70% yield) upon its reaction with t-BuNC in dichloromethane. Accordingly, **3b** is a new structural prototype for dirhenium complexes that contain π -acceptor ligands, and studies are under way to examine the scope of this chemistry.

Acknowledgment. Support from the National Science Foundation (Grant No. CHE85-06702) is gratefully acknowledged.

- (14) Barder, T. J.; Cotton, F. **A.;** Lewis, D.; Schwotzer, W.; Tetrick, S. M.; Walton, R. **A. J.** *Am. Chem. SOC.* **1984,** *106,* 2882.
- (15) For example, $[Re_2Cl_3(dppm)_2(CO)(CN-r-Bu)(CNxyI)]PF_6$ has $\nu(CO)$ = 1927 cm⁻¹ and $\nu(C=N)$ = 2161 and 2134 cm⁻¹ for a Nujol mull.

Supplementary Material Available: **A** table of atomic coordinates and an ORTEP view of the cation $[Re_2Cl_3(\mu\text{-dppm})_2(\text{CO})(CN-t-Bu)_2]^+$ showing the full atomic numbering scheme (5 pages). Ordering information is given on any current masthead page.

Department of Chemistry Phillip **E.** Fanwick Purdue University
West Lafavette, Indiana 47907 **Richard A. Walton*** West Lafayette, Indiana 47907

Received May 11, 1987

Phosphinecarboxylate Ligands Formed by the Insertion of Carbon Dioxide into Metal-Phosphido Bonds. Preparation and Structural Characterization of

Tetrakis(di- *tert* - **butylphosphinecarboxy1ato)dimolybdenum** *Sir:*

We recently demonstrated that amido $(NR₂)$ ligands are stronger π donors than phosphido (PR₂) ligands in structural and spectroscopic studies of $1,2-M_2[P(t-Bu)_2]_2(NMe_2)_4$ (M = Mo (1) and W),¹ and next sought to compare NR_2 and PR_2 ligands on the basis of chemical reactivity. The conversion of NR_2 ligands to carbamate (O₂CNR₂) ligands by reaction with CO₂ is wellknown,² and we and others³ suspected that PR_2 groups might also undergo formal $CO₂$ insertion to give phosphinecarboxylate (O_2CPR_2) ligands. We now report the preparation of the mixed-ligand complex $Mo_{2}[O_{2}CP(t-Bu)_{2}]_{2}(O_{2}CNMe_{2})_{2}(NMe_{2})_{2}$ (M=M) **(2)** from **1,** and its unexpected decomposition to give

 $Mo_{2}[O_{2}CP(t-Bu)_{2}]_{4}$ (M⁴M) (3). To our knowledge 3 is the first homoleptic O_2CPR_2 complex and the first O_2CPR_2 complex to be structurally characterized. The structure of 3 reveals important differences in the bonding capabilities of O_2CPR_2 and O_2CNR_2 ligands.
Phosphido–ami be structurally characterized. The structure of **3** reveals important differences in the bonding capabilities of O_2CPR_2 and O_2CNR_2 ligands.

Phosphido-amido complex **1** and excess *C02* react rapidly to give **2** as a yellow precipitate (54%) according to eq 1. Complex

$$
, 2\text{-Mo}_{2}[P(t-Bu)_{2}]_{2}(\text{NMe}_{2})_{4} + 4\text{CO}_{2} \xrightarrow{\text{inexact}}
$$

$$
Mo_{2}[O_{2}\text{CP}(t-Bu)_{2}]_{2}(O_{2}\text{C}\text{NMe}_{2})_{2}(\text{NMe}_{2})_{2} (1)
$$

2 has been characterized by spectroscopic and elemental analyses.⁴ The lack of any $v_{C=0}$ in the IR spectrum indicates that O₂CP- $(t-Bu)$ ₂ and O₂CNMe₂ ligands are bound in a η^2 fashion. NMR data show that the two $O_2CP(t-Bu)_2$ ligands, the two O_2CNMe_2 ligands, and the two $NMe₂$ ligands are chemically equivalent, respectively, and that each bears diastereotopic alkyl groups. Various geometries are consistent with these data, and the structure of **2** is likely to be similar to known structures of related carbamate complexes.⁵

- (1) Buhro, W. E.; Chisholm, M. H.; Folting, K.; Huffman, J. C. *J. Am. Chem. SOC.* **1987,** *109,* 905.
- (2) Lappert, M. F.; Power, P. P.; Sanger, **A.** R.; Srivastava, R. C. *Metal and Metalloid Amides;* Wiley: New York. 1980; **p** 577.
- (3) (a) Baker's studies of CO₂ insertion into metal-phosphido bonds pre-
ceded our own.^{3b} (b) Baker, R. T. *Abstracts of Papers*, 192nd National Meeting of the American Chemical Society, Anaheim, CA; American Chemical Society: Washington, DC, 1986; INOR-96. (c) Insertion of CS₂ into the Zr-P bonds of $Zr(\eta^2 - C_5H_5)$ $[$ $P(SiMe₃)₂](X)$ (X = Cl, Me) was recently reported, similar reactions with CO₂ were attempted.^{3d} (d) Hey, **E.;** Lappert, M. F.; Atwood, J. L.; Bott, S. G. *J. Chem. SOC., Chem. Commun.* **1987,** 421.
- 4.85 (s, 6 H, NMe₂), 3.10 (s, 6 H, NMe₂), 2.83 (s, 6 H, O₂CNMe₂), 2.63 (s, 6 H, O₂CNMe₂), 1.48 (d, ³J_{HP} = 11.1 Hz, 18 H, *t*-Bu), 1.46 (d, ³J_{HP} = 11.2 Hz, 18 H, *t*-Bu), 1.46 $\mathbf{I} \mathbf{J}_{\text{CP}} = 24.7 \text{ Hz}, \mathbf{O}_2 \text{CP}$), 174.8 **(s,** $\mathbf{O}_2 \text{CN}$ **)**; IR (cm⁻¹, KBr) $\mathbf{V}_{\text{O}_2 \text{CN}}$ 1575 s; 1480 m, 1455 m; mp 169–176 °C dec. Anal. Calcd for $C_{28}H_{60}Mo_2N_4O_8P_2$: C, 40.29; H, 7.25. Found: C, 40.18; H, 7.11. (4) Data for **2:** ³¹P[¹H] NMR (ppm, C_6D_6) 43.0 **(s)**; ¹H NMR (δ , C_6D_6)
- (5) (a) Chisholm, M. H.; Extine, M.; Cotton, F. **A,;** Stults, B. R. *J. Am. Chem. SOC.* **1976,** 98,4683. (b) Chisholm, M. H.; Cotton, F. **A.;** Extine, M. W.; Stults, B. R. *Inorg. Chem.* 1977, 16, 603. (c) Chisholm, M. H.; Reichert, W. W. *Inorg. Chem.* 1978, 17, 767. (d) See also: Chisholm, M. H.; Heppert, J. A.; Hoffman, D. M.; Huffman, J. C. *Inorg. Chem.* 1985, 24, 3

⁽¹³⁾ Cotton, F. A,; Dunbar, K. R.; Falvello, L. R.; Walton, R. **A.** *Inorg. Chem.* **1985,** *24,* 4180.

Figure 1. ORTEP view of $\text{Mo}_2[\text{O}_2\text{CP}(t-Bu)_2]_4$ ²C₆H₆ (3.2C₆H₆). Selected distances (A): Mo-Mo = 2.092 **(3),** Mo-O(av) = **2.107 (9),** 0-C(av) $= 1.27$ (1), and O₂C-P(av) = 1.860 (5).

Our attempts to crystallize **2** have been frustrated by its slow decomposition in solution at ambient temperature, giving several new species (by NMR monitoring). We initially considered the instability might result from reversible $CO₂$ insertion and deinsertion, but 2 does not undergo exchange with ¹³CO₂ over the course of several weeks. One decomposition product readily crystallizes in small amounts (0.08-0.10 molar equiv based on **2**) from C_6H_6 , and has been identified as $Mo_2[O_2CP(t-Bu)_2]_4$. $2C_6H_6$ (3.2 C_6H_6) by spectroscopic analyses,⁶ and X-ray crystallography.⁷ Thus, the decomposition of 2 involves both ligand exchange and redox chemistry. Complex 3 can be prepared directly from $Mo_{2}[P(t-Bu)_{2}]_{2}[\mu-P(t-Bu)_{2}]_{2}^{8}$ and CO_{2} (in ca. 25%) yield based on $MoCl₃$.⁹

- (6) Data for 3: ³¹P{¹H} NMR (ppm, C₆D₆) 51.0 (s); ¹H NMR (δ , C₆D₆) 1.47 (d, ³J_{HP} = 11.6 Hz, 72 H); ¹³C{¹H} NMR (ppm, C₆D₆) 192.5 (d, ¹J_{CP} = 31.3 Hz, O₂CP); IR (cm⁻¹, KBr) 1469 m, 1438 **213-245** "C.
- **(7)** Crystal data for $3.2C_6H_6$ at -155 °C: yellow hexagonal prism $(0.25 \times 0.25 \times 0.30 \text{ mm})$, $a = 13.731$ (21) Å, $b = 12.789$ (17) Å, $c = 15.835$ (23) Å, $\beta = 94.86$ (8)^o, space group $P2_1/n$, $Z = 2$, $d_{\text{calof}} = 1.324$ g cm⁻¹ Using Mo Ka (g) $\frac{1}{2}$ 13.731 (21) Å, $b = 12.789$ (17) Å, $c = 15.835$
(23) Å, $\beta = 94.86$ (8)°, space group $P2_1/n$, $Z = 2$, $d_{\text{valid}} = 1.324$ g cm⁻³.
Using Mo Ka (graphite monochromated), $6^\circ \le 2\theta \le 45^\circ$, 4401 tot reflections with 2943 having $F > 3\sigma(F)(+h, +k, \pm l)$ yielded final residuals $R(F) = 0.032$ and $R_w(F) = 0.035$. The diffractometer has been described previously: Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kirkpatrick, C. C. Inorg. Chem. **1984,** 23, **1021.**
- **(8)** Jones, R. A.; Lasch, J. G.; Norman, N. C.; Whittlesey, B. R.; Wright, T. C. J. Am. *Cbem. SOC.* **1983,** *105,* **6184.**

The molecular structure of $3.2C_6H_6$ is shown in Figure 1, and important distances are listed in the caption. The compound adopts the familiar paddlewheel geometry for $Mo_{2}(O_{2}CX)_{4}$ species,¹⁰ with benzene solvate molecules in axial positions at distances precluding significant bonding interactions (the closest solvate Mo-C distance is 3.11 Å).¹¹ Of special interest are parameters for the μ , η ²-O₂CP(t-Bu)₂ ligands. Configurations at P are grossly pyramidal, as shown by the sums of angles about P atoms, $310.2-313.4$ (6)^o. The P-CO₂ distances of 1.86 (1) Å are normal P-C single-bond lengths.¹² This contrasts with typical parameters for μ , $\bar{\eta}^2$ -O₂CNR₂ ligands, which describe planar configurations at N and short $N-CO₂$ distances, resulting from effective delocalization of N lone pairs into $CO_2 \pi^*$ frameworks.^{5b,13} The net effect is stronger metal-ligand bonding via O-to-M π donation in O₂CNR₂ complexes. The lack of this effect in **3** is presumably a reflection of inherently poor P–C π overlap.¹⁴ Further studies are in progress.¹⁵

MO~[P(~-BU)~]~[~-P(~-BLI)~],, 86802-71-3; C02, **124-38-9;** HP(r-Bu),, **Registry No. 1,** 106651-37-0; 3, 109801-37-8; $3.2C_6H_6$, 109801-38-9; **819-19-2;** Mo, **7439-98-7.**

Supplementary Material Available: Tables of fractional coordinates and isotropic thermal parameters, anisotropic thermal parameters, and complete listings of bond distances and angles and atom-numbering diagrams (11 pages); a listing of calculated and observed structure factors **(8** pages). Ordering information is given on any current masthead page.

- (9) (a) We generate $Mo_{2}[P(t-Bu)_{2}]_{2}[\mu-P(t-Bu)_{2}]_{2}$ in situ from 2MoCl₃ + 6LiP(t-Bu)₂ in THF at -78 °C. Reduction of Mo(III) to Mo(II) is accompanied by the formation of $(r-Bu)_{2}P-P(t-Bu)_{2}$ ⁹⁶ (b) Data for $Mo_2[P(t-Bu)_2]_2[\mu-P(t-Bu)_2]_2$ in situ: ³¹ $P[{}^{1}H$ } NMR (ppm, THF, -35 "C) **279.9** (t, **Jpp** = **64.8** Hz), **231.7** (t, **'Jpp** = **64.8** Hz).
- **(10)** Cotton, F. A,; Walton, R. A. Multiple Bonds Between Metal Atoms; Wiley: New York, **1982; p 84.**
- (11) (a) We note the structural similarity of $3.2C_6H_6$ to $Hb_2(O_2CCF_3)_4$ - $(\eta^2 - C_6Me_6)_2$, in which the C_6Me_6 ligands occupy axial positions with much shorter M-C distances (2.56–2.58 Å).^{11b} (b) Lau, W.; Huffman,
- J. C.; Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 5515.
(12) Corbridge, D. E. C.; Phosphorus; Elsevier: New York, 1985; p 38.
(13) (a) Chisholm, M. H.; Extine, M. W. J. Am. Chem. Soc. 1977, 99, 782,
- **792.** (b) Chisholm, M. H.; Clark, D. L.; Huffman, J. C.; Van Der Sluys, W. C. Ibid., in press.
- **(14)** Albright, T. **A.;** Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley-Interscience: New York, **1985;** pp **145-147.**
- **(15)** We thank the National Science Foundation and the Wrubel Computing Center at Indiana University for support. W.E.B. thanks Indiana University for a Chester Davis Fellowship **(1985-1986)** and W. **G.** Van Der Sluys for important suggestions and discussions.

Received March **27,** *1987*